skip to main content


Search for: All records

Creators/Authors contains: "von Windheim, Natalia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Purpose The purpose of this study is to understand how printing parameters and subsequent annealing impacts porosity and crystallinity of 3D printed polylactic acid (PLA) and how these structural characteristics impact the printed material’s tensile strength in various build directions. Design/methodology/approach Two experimental studies were used, and samples with a flat vs upright print orientation were compared. The first experiment investigates a scan of printing parameters and annealing times and temperatures above the cold crystallization temperature ( T cc ) for PLA. The second experiment investigates annealing above and below T cc at multiple points over 12 h. Findings Annealing above T cc does not significantly impact the porosity but it does increase crystallinity. The increase in crystallinity does not contribute to an increase in strength, suggesting that co-crystallization across the weld does not occur. Atomic force microscopy (AFM) images show that weld interfaces between printed fibers are still visible after annealing above T cc , confirming the lack of co-crystallization. Annealing below T cc does not significantly impact porosity or crystallinity. However, there is an increase in tensile strength. AFM images show that annealing below T cc reduces thermal stresses that form at the interfaces during printing and slightly “heals” the as-printed interface resulting in an increase in tensile strength. Originality/value While annealing has been explored in the literature, it is unclear how it affects porosity, crystallinity and thermal stresses in fused filament fabrication PLA and how those factors contribute to mechanical properties. This study explains how co-crystallization across weld interfaces is necessary for crystallinity to increase strength and uses AFM as a technique to observe morphology at the weld. 
    more » « less
  2. Abstract

    Bioresorbable bone adhesives have potential to revolutionize the clinical treatment of the human skeletal system, ranging from the fixation and osteointegration of permanent implants to the direct healing and fusion of bones without permanent fixation hardware. Despite an unmet need, there are currently no bone adhesives in clinical use that provide a strong enough bond to wet bone while possessing good osteointegration and bioresorbability. Inspired by the sandcastle worm that creates a protective tubular shell around its body using a proteinaceous adhesive, a novel bone adhesive is introduced, based on tetracalcium phosphate and phosphoserine, that cures in minutes in an aqueous environment and provides high bone‐to‐bone adhesive strength. The new material is measured to be 10 times more adhesive than bioresorbable calcium phosphate cement and 7.5 times more adhesive than non‐resorbable poly(methyl methacrylate) bone cement, both of which are standard of care in the clinic today. The bone adhesive also demonstrates chemical adhesion to titanium approximately twice that of its adhesion to bone, unlocking the potential for adherence to metallic implants during surrounding bony incorporation. Finally, the bone adhesive is shown to demonstrate osteointegration and bioresorbability over a 52‐week period in a critically sized distal femur defect in rabbits.

     
    more » « less